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Abstract

Different algorithms for transient modelling of capillary electrophoresis have been described in several papers. Programs
based on such algorithms were applied to various modes of CE. Surprisingly, simulations of capillary isotachophoresis
(cITP) at realistic current densities (>1 kA/ mz) were not reported. Using these programs for practical cITP conditions
resulted in either severe oscillations, mass-balance violation or unexpected program termination. This paper addresses
several numerical paths available for modelling one-dimensional capillary electrophoretic behaviour. Tests for determining
the validity of the presented solutions with respect to cITP were mass balance checks, zone boundary thickness and the
Kohlrausch regulating function. Six different numerical schemes fulfilled these requirements, yet only few could be used for
simulating practical current density situations without causing the aforementioned problems. Attention was paid to space
discretization (central difference and quadratic upwind) and time integration (implicit, explicit). A single computer program
comprising these strategies was developed. Special features for studying transient state phenomena were visualization of
concentrations, velocities, Peclet and Courant numbers, electric field strength, conductivity, pH, buffering capacity and
charge excess. All parameters could be displayed in both the space domain (profile) as well as in the time domain
(electropherogramy).
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1. Introduction In the textbook by Mosher et al. [2] and related
papers, a conventional central difference scheme was

Computer simulations of electrophoretic separa- used and no attention was paid to alternative numeri-

tions have been described in several textbooks [1,2]
and a number of papers [3—10] published in recent
years. Although the basic differential equations
governing such separations are well defined, it
appears from the literature that different numerical
approaches for solving the equations can be chosen.

*Corresponding author.

cal methods. It took until a series of publications by
Ermakov et al. [5,8-10] before this topic was
addressed. There it was shown that addition of
several artificial dispersion terms to the convection—
diffusion equation greatly improved the simulation
results, diminishing numerical oscillations and diffu-
sion. The reason for the occurrence of oscillations is
that, next to the numerical method chosen, numerical
parameters within that method, such as temporal and
spatial grid size, are involved. In order to speed-up
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calculations, these should be as large as possible
without leading to oscillations and negative con-
centrations. The optimal values for these parameters
depend largely on the electrophoretic conditions
chosen (mainly ionic strength and current density).
Also, during stacking with resulting electric field
strength gradients, the optimum grid sizes may differ
from the ones found in later stages of the separation.
In Dose’s approach [4], such grid size optimization
was included, although for strong ions only. Schwer
et al. [6] have subsequently extended Dose’s ap-
proach to include weak ions as well, although
simulations were limited to pH ranges where either
H" or OH™ predominate.

Summarizing, there are a number of numerical
approaches available, which are limited in both
applicability of practical conditions and calculation
speed. By using several alternate numerical ap-
proaches these limitations were dealt with, Another
(minor) point that the existing programs have in
common is the lack of a practical user-interface,
which makes it impossible for other people to use the
software as if it were a word processor. As will be
described, this requirement was met.

2. Materials and methods

Two versions of the program, targeted at different
operating systems, were created. The MS-DOS v6.22
(Microsoft, Redmond, WA, USA) version was de-
veloped using PowerBasic v3.2 (PowerBasic, Car-
mel, CA, USA). A single-line single-key sub-menu
structure, as used in previously reported simulation
software for GC, steady-state CZE (HPCESIM) and
MECC [11], was implemented. The Win32 (Win-
dows 95/Windows NT; Microsoft) targeted version
was developed using Visual C++ v4.0 (Microsoft).
Both programs used an existing database of mobility
and pK data of more than 300 components, de-
veloped for the already mentioned simulators. These
data were taken mainly from the tables compiled by
Hirokawa and co-workers [12—14].

Program development and simulations were car-
ried out on 120/133 MHz Pentium computers with
16-32 MB RAM internal memory.

3. Capillary electrophoresis model

The simplest model for electrophoretic processes
is a one-dimensional convection—diffusion equation.
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This partial differential equation holds for every
component i, at space coordinate z and time . The
concentration C; needs to be calculated from the
diffusion coefficient D, and the net component
velocity v,. The convection term introduces interrela-
tion of the differential equations for all components
through the pH dependent mobilities and the electric
field strength

Ui(z,t) =(m, o + m(z.1)) - Ez.0) (2)

where m,; is the electroosmotic mobility, m, is
effective mobility of component i and E the local
electric field strength.

Since E(z,t) depends on all local concentrations
C,(z,1), mobilities m,(z,¢) and the local pH, Eq. (1) is
actually a set of interrelated equations, that need
solving at the same time. The mobilities in turn
depend on the local pH.

Knowing the acidic constant K, ; for each com-
ponent’s subspecies, and the local hydrogen con-
centration C,; (from the pH), the degrees of dissocia-
tion a,; for subspecies j of component i can be
calculated by

H(z 1)

1:[C(zt)

in which i ranges over the number of components
and j ranges over the number of charged subspecies
n; of component / and

G=1...n) (3)

@, (zt) =

e
3

@@ =1-2a (z1)= )
j=1

From Egs. (3) and (4) the local (signed) effective
mobility m; can be calculated if the absolute mo-
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bilities of the subspecies at infinite dilution, m? j» are
known
’l'
4]
mz,p) =2, a, (z,0)m; ; (5)
ji=1

Corrections of quantities (e.g., mobilities, acidic
constants) for different ionic strengths and tempera-
tures are not introduced into the set of equations, but
could be a valuable extension of the current model.

Once the concentrations and mobilities of all
species in the capillary are known, the local con-
ductivity x can be computed:

- F C _ mguk,
K(z,t) = F| myCy(z,t) @)
+Zcxnzqgumjﬁﬂn> (6)

where m and mg, are the mobilities of hydrogen
and hydroxyde ions respectively, F is Faraday’s
constant, Cy is the local concentration of hydrogen
ions and K, is the equilibrium constant of water.

The modified Ohm’s law finally provides the
means for calculating the local electric field strength
E, knowing the electrical current density J, according
to

J
E@D =75 (7
Eq. (7) 1s used for constant current densities. For
constant voltage separations the total conductivity of
the capillary determines the current density. This
does not complicate calculations noticeably, yet it
results in slightly more calculations being necessary.

When all component concentrations are known,
the pH can be calculated by applying the charge
balance equation

w

Culz,t)
~22.7, 0, (2)C(z0) (8)
i
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where Z, | is the charge of subspecies j of component
i. It was shown [15] that the left-hand side of Eq. (8)
(originating from the Maxwell’s laws) can be of the
order 10”7 mol/m’ in isotachophoresis. It is ex-

pected to be significantly lower in zone electro-
phoresis making the assumption of electroneutrality a
fair working approximation. All previous publica-
tions, except for Coxon et al. [16], assume electro-
neutrality in Eq. (8), which means that the left side is
assumed to be zero.

Some authors have limited their model to strong
ions [4], so that Egs. (3)—(5) are not needed and Eq.
(8) is simplified.

Of more practical value is the modelling of
separations where weak ions are involved. Schwer et
al. [6] solved Eq. (8) for cases where either H30+ or
OH "~ were predominantly present, making the model
somewhat simpler.

A refinement of the model that is sometimes used
to enforce electro-neutrality, is the addition of a
non-equal diffusion term [4,6]. This approach was
not adopted here, because numerical experiments
showed that it violated the mass-balance.

4. Numerical implementation

In order to solve Eq. (1) numerically it must first
be written in a discrete version, which can be done in
several ways, as will be shown later. After choosing
appropriate space and time step values cyclic calcu-
lations on Eq. (1); Eq. (8) (using a central difference
scheme for the electric field strength gradient); Eq.
(3) and Eq. (4); Eq. (5); Eq. (6); Eq. (7) and finally
Eq. (2) can sequentially be carried out.

4.1. Mesh widths

Unfortunately every numerical scheme comes with
its own limitations concerning spatial (Az) and
temporal (At) mesh width size. If these limitations
are disregarded, calculations will mostly result in
fatal runaway situations. Numerical parameters in-
volved in the process of choosing grid values are the
cell Peclet number Pe and the Courant number Co.

Az

IhY)

v (10)
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4.2. Test criteria

To be able to decide which numerical approach is
best, one should define test criteria. Occurrence of
oscillations and the magnitude of numerical diffusion
are the main factors that determine the validity of the
calculated result. First of all oscillations should be
avoided, or minimized. If oscillations do occur at
steep concentration gradients, one should not try
correcting negative concentrations by setting them to
zero, since this will definitely result in violation of
the mass-balance [4]. Small overshoots are accept-
able, provided that they do not lead to uncontrollable
oscillations, violating the conservation of mass. Thus
the most obvious test would be a mass-balance
check, making sure that no material is produced or
lost during calculations. The conservation of mass
can simply be checked by calculating the total
amount of each component at time ¢, and comparing
it to the amount that was initially (before separation)
present in the system.

For isotachophoretic (ITP) separations, the Kohl-
rausch regulating function [17] provides another
means of checking the method’s validity, when and
where a steady-state is reached. Additionally, the
computed boundary layer thickness of zones can be
compared to theoretically predicted values. For
strong electrolytes, Longsworth et al. [18] derived an
analytical solution that was rearranged to [15]:

,_In(9ORT
= FAE (10

in which 4 is the distance over which a sample
component concentration changes between 1 and
99% of its maximum value, R is the gas constant, T
is the temperature and AE is the steady-state electric
field strength difference on either side of the zone
boundary.

4.3. The central difference scheme

The numerical scheme that is used most, is the
central difference (CD) or forward time central space
(FTCS) scheme [2,4,6].

DAt
(Az)°

CZ,+AI:C;+ '(CI;+AZ_2CI1+C12*AZ)

At r ' t r
_TAZ.(UZ+AZCZ+AZ_UZ*AZCZ‘AZ) (12)

This is a straightforward explicit scheme, that does
not depend on the particular net migration direction
of the component in control volume at z. The grid
restrictions to avoid oscillations are that the absolute
value of Pe should not be larger than 2 for any
component, so that:

min D,
Ag=2———— (13)
max |v, |

In addition, numerical stability of the explicit scheme
requires that

min D,
and At < 2’42 (14)
max D, max v;,

i iz

1 (Ay)?
AISE(z)

Simulation of transient capillary electrophoretic pro-
cesses requires spatial resolution ranging from the
(sub)micrometer level (during stacking) up to the
(sub)millimeter level (during detection). For an effi-
cient algorithm, this would require dynamic adapta-
tion of Az. In addition, in view of the quadratic
interrelation between Az and At in Eq. (14), this
poses severe constraints on the computing time. For
example with Az=0.1 wm, At<<10 ps is required.
Simulation of stacking in a 1 mm plag for 1 s, not an
unrealistic example, requires 10° calculation cycles.
There is also no freedom to choose Az and At
independently. During stacking it may be necessary
to choose a smaller Az than the initial value. As
pointed out by Dose [4], it is better to restart the
simulation with a smaller Az than to reduce Az with
all kinds of interpolations for concentrations, espe-
cially since this decrease in Az will often only be
necessary in the first few seconds of a simulation.

4.4. The upwind scheme

When choosing an upwind scheme, the direction
of net migration in each individual element is taken
into account. The absolute Pe value may exceed the
formerly limiting value of 2, but the Co number is
limited to a maximum value of 1.

If the local net migration velocity of a component
is positive, the upwind discretization scheme is
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1+ At t DAt t t t
Cz = Cz + (AZ)Z : (Cz+Az - 2Cz + Cz*Az)
At
— Wi~V Cl ) (15)

For oppositely directed convection, the convection
term is adapted to incorporate elements that are
located one grid step more in the positive direction
of the z-axis.

There are two practical cases where the direction
of overall migration of one and the same component
can be different in different parts of the capillary:
when the electroosmotic mobility and the electro-
phoretic mobility have opposite signs and in the case
of ampholytes.

Until now both schemes (central difference and
upwind) were used to calculate the concentration
explicitly. An expectedly more stable scheme using
implicit calculation of the concentration is the next
step.

4.5. The implicit upwind scheme

The essential element of this approach is solving
the equation implicitly for the concentration, and
explicitly for the time-dependent velocities. Implicit
calculation is inherently stable and poses no restric-
tions on Co values. This allows choosing Az and At
values independent from each other, resulting in a
considerably faster algorithm.

The finite difference scheme of the model dif-
ferential Eq. (1), for positive local net migration
values at z, where C is taken implicitly and v
explicitly, becomes:

1+ Ar DA r+At
z - (A )2 ( z+Az

At +Ar 14
+ap IO Ul CT) = CL (16)

t+Ar t+Ar
Cz + Cz—Az)

Since the velocity at time ¢+ Ar is not known, the
old velocity is used here, which partially cancels the
gained freedom in choice for Co.

In contrast to the scheme of Eq. (15), the implicit
character of Eq. (16) forces it to be solved simul-
taneously for all z values. See Appendix 1 for an

outline of the approach that was used to accomplish
solving this and other implicit schemes.

4.6. An alternative scheme (DIME)

The implicit upwind scheme (Eq. (16)) couples
velocities at time ¢ to concentrations at time ¢+ At.
The larger the time step taken during calculation, the
more the scheme will show inaccuracies. Therefore
an intermediate scheme form taking the diffusion
term implicitly, and the migration or convection term
explicitly (DIME) was manufactured:

t+Ar DA r+At
: (Az )2 (Cria:

t At '
=Cz ( C v —AZCZ~AZ) (17)

+A t+Ar
=2C7+CUTY)

4.7. Higher order schemes

To be able to cope with steep concentration
gradients, better accuracy than provided by the above
mentioned schemes —second order diffusion term,
and a first order convection term— is needed. This
can be achieved by applying higher order numerical
schemes for the space discretization. Several differ-
ent schemes can be implemented in one pass by
introducing the curvature factor (CF) [19]. For
implicit implementation of this concept, Eq. (16)
needs to be rewritten as follows:

t+Ar _D_ﬁ 1+ At

-(C _2C1+A1+CttAi
z (AZ)Z ( z+4z z z A\)

At t ~t+Ar
+ A7 wC, -
where subscript € refers to the left cell boundary and
r to the right cell boundary. The velocity v, is the
average value of the velocities in the control volumes
at z—Az and z:

vic My =ct (18)

l ! r
=55, + D) (19)

For positive values of the left boundary velocity, C,
is given by

C1(+At 2(C1+Az +C1+Az)

— BCT M =20 + €O (20)
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with B, being the CF, also determined by the
velocity at the left cell boundary. Negative velocity
values require adaptation of Eq. (20), and analogous
expressions can be formulated for v, and C,. De-
pending on the chosen CF, a specific numerical
scheme is selected (see Table 1). The QUICK
(Quadratic Upstream Interpolation for Convective
Kinematics) scheme being of the highest (third)
order.

The above mentioned scheme can also be applied
taking the migration term explicitly, as in the DIME
scheme. In that case, Eq. (17) instead of Eq. (16) is
rearranged in a manner analogous to Eqgs. (18), (19),
(20). The results of this effort will not be dealt with
in the present paper.

Depending on the concentration gradient, different
scheme orders can be applied to improve the accura-
cy of the results. In areas of low concentration
gradients lower order schemes suffice and are pre-
ferred, because they do not introduce oscillations.
More a¢curate higher order schemes are preferred in
high concentration gradient areas, where lower order
schemes would add significant numerical diffusion.
A continuous transition from one scheme to another
can be made using a variable curvature factor (VCF)
also denoted by S in this paper.

Leonard et al. [20] presented the constraints that
apply to VCF functions, and proposed several of
these functions, using the normalized concentration
C‘z in the control volume at z, defined by

o c = HE (1)
== =~ — foruy,

) C1+A: - Cz*Az

as running parameter. This makes implementing
implicit calculation to its full extent merely im-
possible. Therefore all concentrations in Eq. (21)
were taken at time ¢,

Leonard [19] proposed the EULER-QUICK func-

Table 1

Curvature factors (taken from Ref. [19])

Method B Order

QUICK 1/8 Third
1/6 Second

Fromm 1/4 Second

2nd upwind 1/2 Second

Central difference 0 Second

tion (Exponential Upwinding or Linear Extrapolation
Refinement), given by:

forC,< —lorC, 215 B=0.125

" 0.5+0.125C,
for —1<C. =0 B=—"T—-—
: 1-2C,
for03=C, =07
B =0.125 — 0.2609(C_ — 1.5)

+0.13613(C, — 0.5)°

for0<C,<03and0.7<C. <1

z

2 ~ ~ [~ . = 3

P (1+E)C. - 05)-\VE(1 - C)
p= (1-2C.)
for1=C. <15 Gt
=G Fehe o)

In addition to this the same author proposed the
ULTRA-QUICK function (Universal Limiter for
Tight Resolution and Accuracy) [20], reading:

for C: <0 B=0.5 (second order upwind)

.5
for0=C <% B=0.125 (QUICK)

C —1

5 .
for=<C, <1 —_—
2(1-2€))

6

forC‘Z =1 =0 (second order central difference).
Both functions were implemented in the computer
program and evaluated.

5. Results and discussion
5.1. Computer program setup

In the MS-DOS based program the capillary was
divided into three compartments of variable length,
the composition of which could be chosen indepen-
dently. Depending on the composition of the first and
last compartment, either ITP or CZE mode of
operation was possible. The inner diameter, driving
current and calculation algorithm could be set in the
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program editor, yet the latter two could also be
changed during simulation. Capillary compositions
could be saved in separate simulation files, so that
simulations could be reloaded and continued later.

The simulation part of the program loaded a
simulation file and if the simulation had not run
before (t=0), the user could enter the physical length
of the middle (injection) compartment, depending on
the allowed range of Az and At¢, which in turn
depended on the algorithm chosen. During simula-
tion, the value of Ar was automatically adjusted in
such a way that a local Co value did not exceed a
preset value. The physical length of the capillary
could be infinitely long, which was achieved by
calculating only in the range of the capillary where
the sample concentration exceeded a predetermined
threshold value, preferably corresponding to 1 mole-
cule/volume element. Sample components were
defined as components of which the initial con-
centration was non-zero in the middle compartment.
If either side of this calculation range approached
either end of the maximum number of grid points,
the calculation range was shifted. If the calculation
range tended to exceed the maximum number of grid
points, Az was doubled, adjacent elements were
averaged and Ar was automatically adjusted.

Any of the following parameters could be plotted
during simulation, and saved or loaded as a function
of the position in the capillary: concentrations, linear
velocities, Pe numbers, Co numbers, pH, electric
field strength, conductivity, Kohlrausch regulating
function value and charge excess. After choosing a
detector location, time-based signals could also be
displayed and saved.

The Windows based program differed mainly from
the MS-DOS based version in the (virtually un-
limited) available amount of memory, meaning that
more space elements could be used, and the fact that
the capillary could be divided into more than 3
compartments.

5.2, Simulations

The numerical implementation of several algo-
rithms were tested and evaluated with different
simulation conditions. The requirements were: ab-
sence of oscillations and numerical diffusion, cor-
rectly calculated steady state properties (concentra-

tions, pH, field strengths) and satisfying mass bal-
ances. Numerical parameters were chosen such that
realistic current densities (1-10 kA/m?) could be
simulated as well as realistic sample plug lengths
(100-1000 pm). Local Pe numbers can thus easily
be in the range 10-1000, quite impossible using a
central difference approach. Time increments, At
however were automatically adjusted such that the
maximum Co number remained smaller than a preset
value.

5.3. Algorithm stability

Mosher et al. [2] mention that their numerical
approach (central difference) was limited to low
current densities in ITP, so that the relative contribu-
tion of diffusion was larger than in practice. The
influence of the current density on numerical stability
was investigated in a comparative study by Ermakov
et al. [8], in which different numerical algorithms
were applied to the isotachophoretic separation of 10
mM each of aniline and pyridine in 18 mM sodium—
20 mM acetate as leading, and 40 mM [B-alanine—50
mM acetate as terminator, at different currents in a
50 pm capillary. Of the finite difference schemes
compared (the upwind Euler, central difference and
artificial dispersion scheme) the latter was reported
to perform best at both 0.05 and 0.2 wA. Higher
currents were not possible due to substantial oscilla-
tions in the regions close to the zone boundaries.
These results can be summarized in stating that the
maximum local Pe number should not exceed 1.

In the implicit upwind scheme introduced in the
present contribution, current densities up to 2.26
kA/m* (10 wA through a 75 wm L.D. capillary) can
be simulated without oscillations. The previously
mentioned numerical schemes were compared by
simulating the steady-state of 44-10~'* mol each of
aniline and pyridine acetate in the above described
electrolyte system, using a 75 pm 1.D. capillary. Fig.
la shows the results of the inherently stable implicit
scheme. The mass balance was accurate within 1
ppm, and the boundary thickness was approximately
170 pm at a maximum Pe value of 26. Steady-state
concentration levels were in accordance with Koh-
lIrausch’s law. When applying the hybrid DIME
algorithm (Fig. 1b) the results are the same in all
respects, except for the lesser degree of numerical
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diffusion than the implicit scheme. This can be seen
from the boundary layer thickness, which was ap-
proximately 120 pm.

Higher order schemes are specifically useful for
the further decrease of numerical diffusion. For a CF
value of zero (second order central difference) the
boundary layer thickness is further decreased to 60
pm (Fig. 1c). This was only achieved at the cost of
severe overshoot due to numerical dispersion at steep
concentration boundaries, however these oscillations
did not violate the mass balance.

A third order scheme, using a CF value of 1/8
(QUICK), resulted in boundary layer thickness val-
ues comparable to the second order central difference
situation, yet showing less oscillations (Fig. 1d). The
algorithms for Fig. 1c and d have less numerical
diffusion when compared to the algorithms for Fig.
la and b, as can be seen from the boundary layers.
The oscillations seen in Fig. 1c and d indicate that
numerical dispersion is becoming significant there.

(c)

0.0205
ODistance trom injection compartment [m]
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Increasing the CF value to 1/2 (second order up-
wind; Fig. le) did not result in dramatic improve-
ments.

Variable curvature factor schemes applied to
mulidimensional problems were reported to produce
significantly more accurate solutions to diffusion
convection problems, especially in the case of steep
gradients [19,20]. Applying the suggested EULER-
QUICK and ULTRA-QUICK schemes to the
steady-state ITP situation led to unacceptable mass
balance violation (Fig. If and g), which could
possibly be caused by interference of the self correct-
ing nature of ITP zone boundaries with this numeri-
cal approach. Additionally a slight deviation from
Kohlrausch’s law was observed.

3.4. Zone boundary thickness

A mixture of tetraalkylammonium ions were sepa-
rated in ITP mode with 10 mM potassium acetate as

(b)

[

o285
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Distanca from inpsction compartment (]

wosrs



J.H.PA. Martens et al. | J. Chromatogr. A 772 (1997) 49-62 57

0 B

I
. - . i S [p—_ -
oot 00015 0.032 00025 o33 cozsz ooza7 00902 0037 coarz
Diatance form Infection compartman [m] Distance from Injection compartment [m]

@ )

. ®

-

PR
00282 00207 0.0002 0.0307 00012
Distance from injection compartiment (m]

Fig. 1. Simulation of the isotachophoretic steady-state of the separation of 10 mM (A) aniline and (B) pyridine in a 18 mM sodium-20 mM
acetate leading and 40 mM B-alanine—50 mM acetate terminator system. Pe_  =26. Algorithms: (a) Implicit upwind; (b) DIME (Diffusion
Implicit Migration Explicit); (c) Second order central difference (CF=0); (d) QUICK (CF=1/8): (e) Second order upwind (CF=1/2); (f)
EULER-QUICK; (g) ULTRA-QUICK.

leading (pH 4.75) and acetic acid as terminator, b Cooo T T T T
using the DIME scheme. From the resulting electric w

field strength results, graphically shown in Fig. 2, "o

both AE and & values were determined. The latter Ew

were also calculated from the former using Eq. (11). %,m .

Table 2 summarizes the results, indicating that the g - a

zone boundary thickness is simulated in the right i,

order of magnitude but that it is systematically : . = -

higher than predicted. This was to be expected taking
the relatively large mesh widths into account. The ‘
cause of this phenomenon is that, although the ouos oot T e e owes otess
maximum Co number is restricted, local values can

be much smaller (because of the uniform grid size), potassium (K, leading), tetramethyl (TMA), tetraethyl (TEA) and

le?\dlng to damplng. It is exp ?Cted that bett.er resylts tetrapropylammonium (TPA) in 10 mM potassium acetate leading
will be achieved when using more grid points (pH 4.75) with acetic acid (H) as terminator. Algorithm: DIME
(smaller mesh widths). (Pe,,,, =46).

Fig. 2. Electric field strength distribution of the ITP steady-state of
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Table 2
Estimation of the zone boundary thickness from simulation

Boundary AE d [Eq. (11)]

d (simulation)

(kV/m) (pm) (pom)
Leading-1 8.7 14 10
1-2 15.7 8 10
2-3 20.8 6 10
3—terminator  43.4 3 8

5.5. Enforced configurations

Enforced configurations are sometimes encoun-
tered in isotachophoresis. These imply that the
migration order in the steady-state does not coincide
with the mobilities of the separands in their zone.
Mosher et al. [2] gave the example of cycloserine in
10 mM sodium formate as a leading with formic acid
(the H,O" ion) as terminator. They calculated and
measured (preparative setup) the properties of the
steady-state zones. A comparison of these data to our
simulation results, using the DIME scheme, can be
found in Table 3. The simulations were carried out at
2.26 kA/m’, so that the relative contribution of
diffusion was more realistic than in Mosher’s simula-
tions. Naturally, steady-state composition does not
depend on current density and the correlation of our
results is striking. The pH and electric field strength
distribution for the steady-state are shown in Fig. 3.

There is an enforced electric field strength step of
the cycloserine zone that reaches out above the
terminator level. The front of the sample zone is very
sharp because of the large field strength gradient, but
also because the effective mobility of cycloserine
changes sign in the direction of the leading (pK,
values of the ampholyte are 4.4 and 7.4). The electric

0.0018 0002 00025 0,003 00035 0.004
Distunce irom injection comparunent (m]

Fig. 3. Simulated local values of electric field strength and pH in
an ITP steady-state of (left-to-right) formic acid (terminator), 0.44
pmol cycloserine (sample) and 10 mM sodium formate (leading)
in a 75 pwm capillary at 10 pA. Algorithm: DIME.

field strength overshoot at the rear of the sample
zone is not an artifact: it was also observed ex-
perimentally. These kinds of physico-chemical over-
shoots can be mistaken for numerical artifacts,
especially whilst they are being formed during
simulation. On the other hand this phenomenon is
well known amongst ITP analysts.

5.6. Application to CZE

In order to get an idea of how the presented
approach would perform for CZE separations, the
computer program was used to simulate peak split-
ting in case of severe sample overload as already
investigated by Ermakov et al. [9,10]. It was shown
that simulation of such phenomena can give valuable
insight into their occurrence. A 2 mm injection plug
of 20 mM pyridine was analysed in a BGE of 20 mM

Table 3
Calculated and experimentally determined composition of ITP steady-state
Zone Leading Cycloserine Terminator

Lit Exp Mod Lit Exp Mod Lit Exp Mod
pH 7.88 5.90 7.9 3.95 4.00 3.99 277 2.82 2.79
Cond 108 80 110 52.6 43.7 49.7 71.5 60.0 63.4
Formic 10 - 10 8.78 - 8.7 18.1 - 18.0
Cycloserine - 0 7.18 5.2 72 - - 0 -

Lit: modelling results taken from [2]; Exp: experimental results taken from [2]; Mod: modelling results of the DIME algorithm.
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Fig. 4. Peak splitting of 20 mM pyridine in 20 mM acetate—
sodium hydroxide at pH 4.5 in CZE mode. Algorithm: DIME.

acetate—sodium hydroxide (pH 4.5) at 2.26 kA/ m’.
The electroosmotic mobility was set at +40-10°
m?®/V s, corresponding to a {-potential of —50 mV.
The detector was located at 10 mm from the start of
the injection plug. The resulting pyridine concen-
tration as a function of time is shown in Fig. 4.

As already pointed out by Ermakov, the pyridine
is clearly split into 2 parts, the second of which
moves with the electroosmotic velocity. In addition
to the pyridine concentration, the local pH and
fieldstrength are plotted as well. The latter explains
especially why part of the pyridine remains in the
injection plug: the local field strength in the sample
zone is so low that the pyridine is trapped. In
addition, the higher pH in the sample zone decreases
the effective charge and velocity of pyridine. As
explained in the original article, the occurrence of
peak splitting depends on the sample concentration
(below 5 mM it does not occur). It can be added that
(at 20 mM) it also depends on the injection plug
length: in a shorter plug, the field strength dip is
smoothed out by diffusion sooner.

6. Conclusion

The developed computer program for the evalua-
tion of several different numerical algorithms

targeted at solving the electrophoretic convection—
diffusion equation proved very useful. The user
interface allowed switching easily from one algo-
rithm to another. A way of practically implementing
implicit computing of the differential equation is
given.

Explicit central difference calculations, as used in
several publications, were used as a starting point for
developing faster and better algorithms, especially
the restriction that the absolute Pe value should not
exceed 2 caused this method to be rather unsuitable
for simulating electrophoretic separations. This re-
striction was circumvented by rewriting the scheme
into it’s implicit form. Stable results not violating the
mass-balance were obtained, be it that the boundary
thicknesses did not conform to the Longsworth
predicted values due to numerical diffusion. In this
respect the proposed DIME scheme was the best first
order scheme, whereas the purely third order QUICK
scheme proved to be the best higher order scheme.
Although fixed curvature factor methods like QUICK
show little numerical diffusion, they also show small
but stable concentration overshoots at sharp gradients
for Pe values smaller than 10. For larger Pe values
these methods become unstable. Of the order adap-
tive schemes, the EULER— QUICK method resulted
in boundary thicknesses close to the predicted val-
ues, whereas the mass-balance was violated heavily
for all Pe values. In contrast the ULTRA-QUICK
method performed well, be it only at Pe values
smaller than 10.

It turned out that all algorithms were to be used
for specific limited situations only, depending on Pe
and Co numbers. In general it was found that higher
order algorithms generate better results than lower
order algorithms, when looking at the zone boundary
thickness.

Finally it should be stressed that being able to
switch algorithms at any point during analysis is
quite important, because during stacking an algo-
rithm less sensitive to numerical oscillations is
advisable. One could select an unconditionally stable
lower order implicit algorithm during the stacking
phase, followed by a higher order algorithm for
sharpening up the steady state boundaries afterwards.
The switching point depends on the maximum local
Pe value in the simulated capillary.
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7. List of symbols and abbreviations

Symbol Description Unit Typical Occurrence

value/range

I Differential operator - Operator
Degree of dissociation - 0.1

DAs
8 Defined as —— -
(&9)?

Substitution
€ Dielectric constant F/m 708107
K Conductivity S/m

At -
T defined as . s/m Substitution

4

Matrix -
Concentration mol/m
Concentration vector -
Courant number -
The distance over which a sample
compenent concentration changes be-
tween
1 and 99% of its maximum value

AROOO >

3
=

Diffusion coefficient m’/s 107"%-107°

Diffusion matrix -

Electroosmotic flow - Subscript
Electric field strength V/m *10°

Faraday’s constant Cleq 96 485 Constant
Hydrogen Subscript
Component number - Subscript
Unity matrix -

Subspecies number - Subscript
Current density A/m® +/-10°

Acid dissociation constant -

Dissociation constant of waterat 298K mol*/m® 107% Constant
Effective mobility m Vs +/-1077

m Mobility at infinite dilution m Vs /=107

my Mobility of hydrogen ion m/Vs 363 1077 Constant
Mobility of hydroxide ion m*/Vs —205-1077 Constant
Migration matrix -

Number of charged subspecies -

Matrix dimension -

Hydroxide - Subscript
Integer counter - 1.2,

Peclet number -
Integer counter - .
Integer counter 12,...
Boundary conditions vector -

Gas constant Hmol K 83114 Constant

Time 5 Argument
Linear velocity m/s +/-107F
Water -

Space coordinate, along the axis of m

the

capillary

=

£

FARSTNTITIMEOD

3
o
I

Oz = E
2 <

~

€S~ xm v o

Argument

o

z Charge number -

Appendix 1
Matrix implementation of the convection—
diffusion equation

For implicit calculations the set of convection—
diffusion equations must be solved simultaneously

for all z values. In order to do so, the equations are
rewritten as an N by N matrix operation with the
concentrations at ¢ and ¢+ At, C" and C'™* in vector
notation, respectively, and the boundary conditions
given in the vector r:

ACHM=C"+r (A-1)

Matrix A can be defined as the sum of three
matrices:

A=I—-D+M) (A-2)

where I is the unity matrix, D is a matrix solely
containing diffusion term coefficients and M solely
contains migration term coefficients. Numerical
schemes that do not incorporate implicit calculation
for either the diffusion term or the migration term in
the original diffusion—convection equation, will have
an all zero matrix D or M, respectively. Eq. (A-1)
can be solved with a simplified LU decomposition.

The lower, main and upper diagonal vectors in the
tridiagonal matrix A are designated A,, |, A,, and
A, ;> respectively. Here i is used as a matrix
element index. When defining & and 7 as

_ DAt
T (Az)? (A=3)
and
At
AL (A-4)

the matrix elements, in the case of the implicit
upwind scheme, for positive and negative net local
migration velocities at z are given by

A, =6~—Tv, _,, resp. A, =68 i=21)N

A, =1-26+71v,
resp. A;;=1-26—171-v,
i=1(1)N

A, =6
resp. A, =d+T7 v, i=NN-L

In view of the above, the boundary conditions r,
are only non-zero for the first (z=1) and last (z=N)
control volume, again for positive and negative net
local migration velocities at z respectively:
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r,=(=8+7-vy) C, resp. r, = —8-C,

ry= —=68'Cpyya, TESP.
= (=6—r1- U(N+1)Az)' C(NH)AZ

. . 1 14
It is most convenient to take C, and Cy,,,, a$

being equal to the invariant concentration in the left
and right buffer vessel, respectively. For sample
components these would normally be zero except
during electrokinetic injection from one of the buffer
vessels, as suggested by Dose [4]. By introducing
invariance of the concentrations in the buffer vessels,
it is not possible to describe buffer exhaustion in
these compartments. When the buffer vessels in
practice are large enough, noticeable exhaustion will
not occur. Nevertheless, it could be interesting in
some cases to study buffer exhaustion, imposing
different boundary conditions, which is beyond the
scope of this paper, especially since the one-dimen-
sional case would not suffice to describe such
phenomena.

With minor adaptations, an analogous strategy can
be used for solving all other schemes mentioned in
this paper. Table 4 lists the elements that make up A
for those particular cases.
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